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THE ROLE OF THE CEE REGION’S BANKING SECTOR  
IN THE TIME OF THE RUSSO-UKRAINIAN WAR: 
MEASURING VOLATILITY SPILLOVERS

Milán Csaba Badics1

ABSTRACT
In this paper, I investigate the volatility spillovers of the European banking net-
work in 21-22. Applying the Diebold-Yilmaz framework to the daily stock return, 
which identified volatilities for 14 European banks, I analyse the impact of the 
first 100 days of the Russo-Ukrainian War on the banking sector. The empirical 
results suggest that the volatility-connectedness of the system reaches its maxi-
mum at a time of war. Similar to the earlier empirical literature, I find that, in 
calm periods, large banks play a critical role in volatility risk transmission. How-
ever, I conclude that, during the first 100 days of the Russo-Ukrainian War, the 
key participants in the financial network were institutions from the CEE region. 
My results suggest that, considering the banking network’s macro and group-
aggregated level volatility connectedness, an early-warning system to detect trou-
bled financial institutions should be built.

JEL codes: C32, G01, G12, G15, G21
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1 INTRODUCTION

Network analysis of the financial institution (FI) system has become widely rec-
ognised as a critical regulatory issue over the past decade. Connections and spill-
overs between FIs play a crucial role in systemic risk assessment. Furthermore, 
during crises, the strength of the connections sharply increases. Risk spills over 
across institutes, as happened during the Global Financial Crisis (GFC) of 2007-
2009, the European Sovereign Debt Crisis (ESDC), and more recently during 
the Covid-19 (C19) turmoil and the Russo-Ukrainian War (RUW) (Diebold and 
Yilmaz, 2014). These events highlighted the importance of analysing the connec-
tions and spillover channels between financial institutions. For this reason, regu-
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lators need to monitor the structural changes in financial networks and identify 
the systemically important financial institutions (SIFIs), as the key participants in 
the financial institutions’ network.
Recently, several empirical frameworks (quantitative methods) have appeared, 
aiming to calibrate the linkages among FIs and observe systemic risk. Bisias et al. 
(2012) identified more than 30 quantitative systemic risk measures in economics 
and finance literature. Their survey classifies them into six groups, one of which 
is a network-based approach.
On the empirical side of the systemic risk modelling from the network perspec-
tive, several measurements have recently been developed to quantify the connec-
tions between FIs. The most widespread methods are the Granger causality net-
work (Billio et al., 2012), the delta conditional value-at-risk (ΔCoVaR ) proposed 
by Tobias and Brunnermeier (2016), and the marginal expected shortfall (MES) 
(Acharya et al., 2012). Besides them, Brownlees and Engle (2017) designed the con-
ditional capital shortfall index (SRISK), and numerous studies appeared based 
on the Vector autoregressive model-based Diebold-Yilmaz (DY) framework (DY, 
Diebold–Yilmaz, 2009; 2012; 2014). 
We can group these measures in several ways. One differentiates the price-based 
systemic risk methods from those that incorporate book values. The first includes 
the ΔCoVaR and the MES, while the second includes SRISK, the leverage ratio, 
and the CAPM beta times market capitalization (Benoit et al., 2017).
Besides that, the existing empirical literature on systemic risk can be divided into 
two broad approaches. The first measures the financial institutions’ overall sys-
temic risk in a univariate framework. These models (ΔCoVaR, MES, and SRISK) 
cannot consider all connections between the FIs in the network. The second 
group of studies focused on connections and spillovers between the FIs as a po-
tential source of systemic risk using network-related methods (Granger-causality 
and DY framework). These methods make it possible to capture the linkages on 
different levels of the network and consider the global connectivity of all system 
participants.
Of the relevant systemic risk methods, the Diebold-Yilmaz framework has sev-
eral favourable properties. First, unlike Granger causality network analysis (Bil-
lio et al., 2012), the DY framework estimates weighted connections (Diebold 
and Yilmaz, 2012). Second, ΔCoVaR (Tobias and Brunnermeier, 2016) and MES 
(Acharya et al., 2012) are related to the directional connectedness indices of Die-
bold and Yilmaz so, unlike the DY framework, they cannot track any association 
between individual firms (Diebold and Yilmaz, 2015).
In recent years, the literature has highlighted the positive implications of these 
network models. Due to its favoured attributes, the DY framework has often been 
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used to analyse the spillovers of financial institutions through stock price volatili-
ties ((Diebold és Yilmaz, 2014; Baruník és Krehlík, 2018), or the linkages between 
FIs and sovereign bonds (Alter and Beyer, 2014 and Demirer et al., 2018) or sover-
eign credit default swap (CDS) prices ((Bratis et al., 2020; Greenwood-Nimmo et 
al., 2019).
In addition, the DY framework has been applied to networks of different asset 
classes such as equities (Baruník et al., 2016), bonds (Claeys and Vasícek, 2014), 
exchange rates (Bubák et al., 2011), commodity prices (Kang et al., 2017), crypto 
currencies (Moratis, 2021), or across asset classes (Kurka, 2019; Wang et al., 2016).
Focusing on the FI network, Diebold and Yilmaz (2014) first applied the frame-
work to systemic risk modelling. They used the daily realised volatility time series 
to examine the sensitivity of the connections across major U.S. FIs. They focused 
on the four key events of GFC and illustrated the network on specific days with 
network snapshots. Diebold and Yilmaz (2015) extended this analysis by examin-
ing the spillover channels of the volatility network of major American and Eu-
ropean financial institutions that emerged during the GFC and the ESDC. They 
found the following results related to the two continent’s bank systems: prior to 
the Lehman Brothers’ collapse, realized volatility spillovers2 primarily flowed 
from U.S. financial institutions to their European counterparts. However, after 
Lehman Brothers’ bankruptcy in September 2008, the financial crisis evolved 
into a worldwide phenomenon, causing volatility spillovers and linkages across 
the Atlantic to become two-way, with a notable decrease in net spillover from the 
U.S. to Europe. Demirer et al. (2018) applied a LASSO (least absolute shrinkage 
and selection operator) estimated VAR model to extend the number of financial 
institutions investigated and analyse global bank network connectedness. They 
examined a network comprising the top 150 banks between 2003 and 2014 and 
concluded that global bank spillovers have a strong geographic component.
The empirical literature on European systemic risk modelling from a network 
perspective has become increasingly developed in recent years. One of the first 
studies by Paltalidis et al. (2015) found that the European banking sector is highly 
connected, which causes a risk of financial contagion. A few years later, Dreassi et 
al. (2018) examined the credit risk spillover based on the CDS spreads between the 
European banks and insurance companies over the GFC and ESDC. They con-
cluded that, for banks, their funding and income diversification and, for insur-
ance companies, their size and leverage play the key role in risk spillover. Shahzad 
et al. (2019) differentiate large and small banks in the network and highlight that 

2 volatility spillover: a shock in a financial institution’s volatility affects the other institution’s 
volatility
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large institutions are the transmitters of the network, and the small ones play the 
role of receiver. Besides that, the network connections depend on the market’s 
state. Using an advanced network method3, Foglia and Angelini (2020) examined 
the tail risk connections between FIs in the Eurozone. They show that risk spill-
over is more substantial during crisis periods. Besides that, they show that the 
banks are the key participants in the system. Torri et al. (2021) strengthened the 
earlier results, highlighting the strong connections between the institutions of the 
European banking sector. Borri and Di Giorgio (2021) examined the role of the 
largest European banks in the FI network, and show that larger banks contribute 
more to contagion than smaller ones. Of the European bank network studies, 
only a few had a Central and Eastern Europe (CEE) regional focus, mainly related 
to the Hungarian market (Berlinger et al., 2011; 2016; Bodnár, 2021).
Despite the large number of recent network-based systemic risk modelling stud-
ies and the diverse methods used, the deeper structure of the FI networks (analys-
ing at both micro and other aggregated levels) during crisis periods has yet to be 
investigated. Besides that, more studies that aim to identify the key participants 
of the system and analyse the dynamics of their connections and spillovers dur-
ing turbulent periods and different crises need to be carried out. It is essential 
that regulators monitor any abrupt changes in the financial network, understand 
the dynamics of the network at different levels and identify the role of the key 
participants in the system.
To address this situation, in this paper I characterise the static and dynamic vola-
tility connectedness4 of 14 European financial institutions via the DY framework 
before and during the Russo-Ukrainian War. My analysis differs from previous 
studies in its selected time period and the FIs investigated. I examine the con-
nections between the most significant and medium western European banks and 
four financial institutions from the CEE region. 
My research makes a twofold contribution to the systemic risk literature. Firstly, 
I aim to investigate the spillovers between FIs in different regions of Europe. De-
spite numerous studies analysing the volatility spillover between financial insti-
tutions in Europe, to the best of my knowledge, this is the first research focusing 
on the role of the CEE region’s financial institutions in the network. Secondly, I 
provide fresh evidence of volatility connectedness during the RUW. Although 
many papers investigated the spillovers of the bank network during different cri-
sis periods (GFC, ESDC, C19), none of them examined the dynamics of the net-
work and the key participants before and during the war.

3 TENET framework
4 volatility connectedness: the strength of the linkages in the volatility network
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This paper proceeds as follows. In Section 2, I briefly outline the Diebold-Yilmaz 
framework. I present the dataset in Section 3. In Section 4, I provide dynamic and 
static characterisations of the volatility-connectedness of the European financial 
institutions during the RUW. Finally, I conclude in Section 5.

2 DIEBOLD-YILMAZ FRAMEWORK

I use the framework devised by Diebold and Yilmaz (2014) to estimate the net-
work of the selected financial institutions. Following the seminal paper (Diebold 
and Yilmaz, 2009; 2014), the network and spillover measures are based on VAR(p) 
model coefficient and covariance matrix estimation (Sims, 1980) and its forecast 
error variance decompositions (FEVD). 
The framework is based on the concept that, for every time series of the network, 
we can calculate the forecast error variance based on the estimated VAR(p) model 
coefficient and covariance matrix. This variance is related to its own and other 
time series shocks. Due to the VAR(p) model identification, the shares of own 
and other time series’ shocks can be calculated. In the last step of the process, the 
forecast error variance decompositions can be summarized in a spillover table, 
which we refer to hereafter as the DY spillover table.
The first step of the estimation process is to specify a stationary VAR(p) model 
with J time series using the following equation:

 (1)

where Yt is a J × 1 vector of the time series, βi is an J × J autoregressive coefficient 
matrix, and lastly εt is an J × 1 vector of error terms. It has a zero mean with a 
∑ covariance matrix. The VAR(p) process is assumed to be stable and stationary, 
while the covariance matrix ∑ is needed to be positive definite with bounded larg-
est eigenvalue (Lütkepohl, 2013).
To estimate the DY framework’s most important element, the DY spillover table, 
we need to estimate the coefficient matrices β1, β2, ... βp and the error covariance 
matrix ∑ efficiently. The βi coefficient matrices reveal the temporal dependence 
between the time series and ∑ reveals the contemporaneous linkages among them 
(Diebold and Yilmaz, 2014).
The starting point for the DY framework to transform the time series in the 
VAR(p) in Eq. 1 into its vector moving average (VMA) representation using the 
Wold theorem to derive the following equation: 

 (2)
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where Ai is an J × J moving average coefficient matrix (Diebold and Yilmaz, 2012).
As Diebold and Yilmaz (2014) emphasised, the calculated moving average coef-
ficients and the estimated error covariance matrix (or its nonlinear transforma-
tions, such as impulse response functions (IRF) or forecast error variance decom-
positions (FEVD) are the keys to understanding the dynamics of the time series 
network.
FEVD allow us to calculate the fraction of the H step-ahead error variance in 
forecasting Yi (YiH) that is due to shocks to other time series such as Yj , to which 
we will hereafter refer as a spillover between Yi and Yj. Generally, in the DY 
framework the measures of spillovers between the time series are given by the 
FEVD of the VAR(p) model. Unfortunately the calculation of the FEVD requires 
orthogonal innovations, but the VAR innovations are generally contemporane-
ously correlated (Diebold and Yilmaz, 2012; 2014).
There are two widely used approaches in the early DY framework-related papers 
for deriving the variance decomposition. The first method uses the Cholesky fac-
tor orthogonalisation of the covariance matrix ∑, which generates orthogonalised 
innovations. The weakness of this decomposition is that its results in an order-
dependent FEVD (Diebold and Yilmaz, 2012).
The other approach uses the generalised VAR framework of Koop et al. (1996) 
and Pesaran and Shin (1998), which allows correlated shocks. As a result, this sec-
ond method produces an order-independent FEVD. In the empirical DY network 
studies, applying the second method is more widespread.
The generalised FEVD can be calculated in the following way:

 (3)

where σjj is the j-th diagonal element of the error term’s covariance matrix ∑, Ah 
is the moving average coefficient matrix multiplying the h-lagged shock vector 
in the Wold’s moving average representation (Eq. 2) and ei is a selection vector. 
The numerator in Eq. 3. represents the contribution of shocks in variable Yj to the 
H-step FEVD of time series Yi. The denominator is the forecast error variance of 
the time series Yi. 
Unfortunately, the sum of the contributions to the variance of the forecast er-
ror is not necessarily one because, in the general FEVD, the shock terms are not 
orthogonalised (Diebold and Yilmaz, 2012). Normalisation is therefore required, 
which we calculate in the following way:

 (4)
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The generalised FEVD is used to construct the several systemic/network-con-
nectedness measures of the DY framework (Diebold and Yilmaz (2012) and Die-
bold and Yilmaz (2014). First, the sum of directional spillovers to time series Yi 
FROM all other time series (FROM spillover index ) is defined with the 
following equation:

 (5)

Second, we are interested in the sum of the shocks transmitted by time series 
Yi TO other time series (TO spillover index ):

 (6)

The third relevant measure is the NET spillover index (Eq. 7), which calculates the 
difference between the gross transmitted (TO) and received (FROM) shocks from 
all other time series:

 (7)

Finally, at the macro level of the network analysis, the system-wide spillover index 
(SUM spillover index ) offers information about the average influence 
one time series has on all other time series, regardless of the direction, in the fol-
lowing way:

 (8)

In summary, the total spillover index is the sum of all the off-diagonal elements 
of the generalized FEVD matrix relative to the number of time series considered 
in the VAR(p) model. It summarises the measurement of how much of the FEV 
of the time series can be explained by spillovers from other time series. A large 
(small) total spillover index means that the average propagation of a shock in one 
time series to all others in the system is high (low) and, thus, the systemic risk of 
the network is high (low) (Diebold and Yilmaz, 2014).
We can further decompose the directional spillovers between two time series into 
net pairwise directional spillovers. This decomposition allows the spillover link-
ages between two specified time series to be determined. NET pairwise spillover 
index (NETP) between time series Yi and Yj is the difference between the gross 
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shocks transmitted from Yi to Yj and those transmitted from Yj to Yi, calculated 
in the following way:

 (9)

As Diebold and Yilmaz (2014) pointed out, having a positive (negative) value of 
the net pairwise directional spillovers implies that time series Yj dominates (is 
dominated by) time series Yi. 
During turbulent periods, an increase in the average pairwise spillovers (NETP) 
from one time-period to another corresponds to an increase in the total spillover 
index (SUM) of the system. In the DY empirical literature, abrupt increases in to-
tal spillover index or pairwise spillover indices are often interpreted in relation to 
systemic shocks (Diebold and Yilmaz, 2014; Greenwood-Nimmo and Tarassow, 
2022). Following Diebold and Yilmaz (2012; 2014), almost all the researchers apply 
a rolling window approach, because it is a simple and effective way to analyse the 
dynamics of the linkages between the network of time series.
In order to create a full comparison between the indicators, in my empirical 
analysis I use both macro (SUM) and aggregated micro (NET) spillover indices, 
both in a static and a dynamic way to analyse the linkages between the financial 
institutions. The block-aggregation method of Greenwood-Nimmo et al. (2016) is 
a flexible tool to extend the spillover measures from variable to any group-level 
aggregation. 

3 DATA

The data cover January 4 2021, to December 30 2022, with 521 daily observations. 
The institutions are listed in Table 1. We divide the financial institutions into 
three subgroups: big financial institutions (Big FI), medium banks (Medium FI), 
and financial institutions from the CEE region (CEE FI). My main objective is to 
study the spillover channels between the biggest financial institutions in Western 
Europe and the CEE region.
I investigate the spillovers between 10 Western European financial institutions 
from the UK (HSBC Holdings, Barclays), France (BNP, Credit Agricole), Switzer-
land (UBS), Spain (Banco Santander), Netherlands (ING Group), Italy (Intesa San 
Paolo, UniCredit) and Belgium (KBC Group). Besides that I analyse the role of the 
CEE region’s biggest financial institutions (Komercni banka – CZ, OTP Bank – 
HUN, Bank Handlowy w Warszawie – POL and BRD Groupe Société Générale 
– ROM) in the banking network.
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Table 1
Financial institutions, tickers and market caps at the end of 2021 in billion €.

Panel A: Big Financial  
Institutions Bloomberg Ticker Market Cap

HSBC Holdings HSBA 107.44
BNP Paribas BNP 74.78
UBS UBSG 54.67
Banco Santander SAN 50.20
ING Group INGA 46.23

Panel B: Medium Financial  
Institutions Bloomberg Ticker Market Cap

Credit Agricole ACA 38.88
Intesa San Paolo ISP 44.09
Barclays BARC 37.23
KBC Group KBC 31.44
UniCredit UCG 30.15

Panel C: CEE Region Financial 
Institutions Bloomberg Ticker Market Cap

Komercni banka KOMB
OTP Bank OTP
Bank Handlowy w Warszawie BHW
BRD Groupe Societe Générale BRD

Source: https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/top-
20-european-banks-by-market-cap-q4-21-68258343

The dataset consists of daily low and high prices, extracted from Bloomberg in or-
der to measure Parkinson volatility following the method of Diebold and Yilmaz 
(2012). I set H = 10 (forecast horizon) for the DY framework and p = 1 lag in the 
VAR model estimation. I use 100-day rolling window for the time-varying con-
nectedness. These are the most commonly used parameters in the empirical lit-
erature (Diebold and Yilmaz, 2014). To strengthen my results, I also analyse the 
robustness of these parameters.
In the next subsection, I apply the previously introduced DY framework to per-
form a crisis analysis of the Russo-Ukrainian War. Using a block-aggregation 
method, I examine how the CEE region’s volatility connections act as contagion 
channels during this period. Finally, I analyse the robustness of the results for the 
chosen DY framework parameters (window size, VAR lag).

https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/top-20-european-banks-by-market-cap-q4-21-68258343
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/top-20-european-banks-by-market-cap-q4-21-68258343


THE banKinG sECTOR in THE TiME OF THE RUssO-UKRainian WaR 413

4 EMPIRICAL RESULTS

Firstly I perform a rolling-window (dynamic) analysis on the volatility network to 
investigate the dynamics of the total spillover index. Figure 1 represents the result 
with a 100-period rolling window, H = 10 forecast horizon, and p = 1 lags. The light 
grey shaded area represents a calm period in the second half of 2021, and the dark 
grey shaded represents the first 100 days of the Russo-Ukrainian War.

Figure 1
Volatility total spillover index for the network 
from 2021-06-01 to 2022-12-30.

Note: The information in the Diebold-Yilmaz network is calculated from a rolling window analysis 
with T = 100, VAR(1) estimation. Dates correspond to the end date of the windows. Vertical light gray 
(dark gray) shaded are highlighted calm(crisis) periods. 

Generally, the volatility total spillover index (TSI) ranges from 55 to 65%. Howev-
er, in the middle of the examined period, the TSI index peaks almost immediately 
after the Russian invasion of Ukraine (2022-02-24). This peak is sustained in the 
first 100 days of the war after the total spillover index sharply declines to the origi-
nal level of the index. Based on Figure 1, I can conclude the following: if a shock 
greater than a certain threshold hits the financial network, it becomes overheated, 
and strong connections appear in the system temporarily. Figure 1 shows evi-
dence of a structural change in the banking network during the Russo-Ukrainian 
War. These results align with the earlier network-based empirical literature on 
the financial markets and strengthens the results of Shahzad et al. (2019).

Volatility TSI

01-Jun-202101-Jun-2021 01-Sep-202101-Sep-2021 01-Dec-202101-Dec-2021 01-Mar-202101-Mar-2021 01-Jun-202101-Jun-2021 01-Sep-202101-Sep-2021 01-Dec-202101-Dec-2021
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To better understand the network, I aggregate the spillover table within and be-
tween the groups (Big FI, Medium FI, CEE FI), and calculate the aggregated net 
spillover indices using a rolling-sample analysis. Figure 2. represents the result 
with a 100-period rolling window, H = 10 forecast horizon, and p = 1 lags. The light 
grey shaded area represents a calm period in the second half of 2021, and the dark 
grey shaded area represents the first 100 days of the Russo-Ukrainian War. Solid, 
dashed, and dotted lines illustrate the group-aggregated net spillover indices of 
the Big, medium, and CEE region financial institutions. 
In general, the net spillover index for the Big and Medium groups is positive, 
meaning they are the network’s risk transmitter5 participants, and the financial 
institutions of the CEE group play a shock receiver role (the CEE NET index is 
always negative). However, the indices vary during the examined period. The net 
spillover index for the CEE region has the largest volatility, but we can find abrupt 
changes in the other two net spillover indexes, mostly in turbulent times. These 
results supports the findings of Borri and Di Giorgio (2021).

Figure 2
Volatility group-aggregated net spillover index for the network  
from 2021-06-01 to 2022-12-30.

Note: The information in the Diebold-Yilmaz network is calculated from a rolling window analysis 
with T = 100, VAR(1) estimation. Dates correspond to the end date of the windows. Vertical light gray 
(dark gray) shaded are highlighted calm(crisis) periods.

5 risk transmitter: NET value is positive

Big FI NET SI 
Medium FI NET SI
CEE FI NET SI

01-Jun-202101-Jun-2021 01-Sep-202101-Sep-2021 01-Dec-202101-Dec-2021 01-Mar-202101-Mar-2021 01-Jun-202101-Jun-2021 01-Sep-202101-Sep-2021 01-Dec-202101-Dec-2021
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To compare a calm period before the invasion and the first four months of the 
war, I calculate the aggregated spillover table for two 100-day time periods (be-
tween 2021-01-04 and 2021-05-21 for the calm period and between 2022-02-24 and 
2022-07-13 for the war). Table 2 and Table 3 show the results; information for both 
tables is calculated from a VAR(1) estimation.

Table 2
Group aggregated spillover table with FROM, TO and NET spillover indices 
for the network from 2021-01-04 to 2021-05-21

Big FI Medium FI CEE FI FROM

Big FI 57.86 38.99 3.16 42.14
Medium FI 38.18 57.77 4.05 42.23
CEE FI 10.40 11.66 77.94 22.06
TO 48.58 50.65 7.2 106.43
NET 6.43 8.42 –14.85 0

Note: The information for the Diebold-Yilmaz network is calculated from a T = 100, VAR(1) esti-
mation.

Table 2 and Table 3 strengthen the results of Figure 2. After the Russian invasion 
on 2022-02-24, the network changed; not only on the macro level but also in the 
deeper structure. All the net spillover indices increased in absolute terms, and the 
financial institutions in the CEE region play the key role - as risk receivers6 - in the 
network. This information can be important for regulators, who are monitoring 
the financial system on a daily basis.

Table3
Group aggregated spillover table with FROM, TO and NET spillover indices 
for the network from 2022-02-24 to 2022-07-13

Big FI Medium FI CEE FI FROM
Big FI 54.03 37.02 8.95 45.97
Medium FI 39.03 51.11 9.86 48.89
CEE FI 25.25 23.99 50.76 49.24
TO 64.28 61.01 18.81 144.10
NET 18.31 12.11 –30.43 0

Note: The information for the Diebold-Yilmaz network is calculated from a T = 100, VAR(1) estimation.

6 risk receiver: NET value is negative 
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To check the sensitivity of the results to the window size, I calculate the financial 
network with 50-day and 200-day windows as well as the selected calm and war 
periods. Table 4 shows that volatility connectedness results are not sensitive to 
window size.

Table 4
Robustness check of the group aggregated net spillover indices  
with 50-day, 100-day and 200-day windows

Calm period

First Day Last Day Window  
size

Big  
FI NET 

Medium 
FI NET

CEE  
FI NET

2021-01-04 2021-03-12 50 5.96 10.73 –16.7
2021-01-04 2021-05-21 100 6.43 8.42 –14.85
2021-01-04 2021-10-08 200 10.31 4.43 –14.74

Russo-Ukrainian war

First Day Last Day Window  
size

Big  
FI NET 

Medium 
FI NET

CEE  
FI NET

2022-02-24 2022-05-04 50 24.68 12.02 –36.7
2022-02-24 2022-07-13 100 18.31 12.11 –30.43
2022-02-24 2022-11-30 200 10.74 13.18 –23.92

Note: The information for the Diebold-Yilmaz network is calculated from a T = 100, VAR(1) estimation.

Besides that, to check the sensitivity of the results to the lag selection of the 
VAR(p) model, I calculate the financial network with a VAR(2) model as well. 
Table 5 shows that volatility-connectedness results are not sensitive to the VAR(p) 
model lag parameter.
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Table 5
Robustness check of the group aggregated net spillover indices with VAR(1) 
and VAR(2) models

Calm period

First Day Last Day VAR lag Big  
FI NET 

Medium  
FI NET

CEE  
FI NET

2021-01-04 2021-05-21 1 6.43 8.42 –14.85
2021-01-04 2021-05-21 2 5.57 8.12 –13.69

Russo-Ukrainian war

First Day Last Day VAR lag Big  
FI NET 

Medium  
FI NET

CEE  
FI NET

2022-02-24 2022-07-13 1 18.31 12.11 –30.43
2022-02-24 2022-07-13 2 16.32 11.17 27.49

Note: The information for the Diebold-Yilmaz networks is calculated from a 100-day window.

At the end of this section, I conclude that the extended Diebold-Yilmaz frame-
work is a robust, powerful tool for undertaking crisis analysis and can identify the 
key groups of financial institutions and contagion channels. Similar to the earlier 
empirical literature, large banks play a critical role in volatility risk transmission 
in calm periods in my analysis. I complete this with a new finding, because finan-
cial institutions from the CEE region were the key participants in the network 
during the first 100 days of the Russo-Ukrainian war. 
Despite the several advantages of the original Diebold-Yilmaz framework (Die-
bold and Yilmaz, 2014), it has a shortcoming, too. The approach only captures the 
linear relationship between the time series due to the VAR model concept. If re-
searchers assume nonlinear linkages between the financial institutions, they can 
apply the TVP-VAR version of the framework (Antonakakis et al., 2020), which 
handles nonlinear relations using time-varying parameter estimation.
My results are relevant for regulators as they provide insights into the behaviour 
of the European banking network during turbulent and tranquil periods. My 
findings related to the financial institutions from the CEE region during crisis 
periods can be important for identifying European SIFIs.



Csaba badiCs Milán418

5 CONCLUSION

This paper examined dynamic and static volatility spillover between 14 European 
banks over the last two years, focusing on the Russo-Ukrainian war. For this pur-
pose, I applied a network-based analysis. To analyse the role of the smaller finan-
cial institutions in the network, I included four banks from the CEE region. My 
results provide an essential insight into the structure of the European banking 
system during calm and turbulent periods. Both the static and dynamic analy-
ses highlight that the network is highly interconnected. I find that the volatil-
ity connectedness of the system reaches its maximum at the time of war. In my 
examined period, big and medium financial institutions from Western Europe 
play a shock transmitter role, while CEE region banks play a receiver role. These 
institutions were the key participants in the network during the first 100 days of 
the Russo-Ukrainian war, as the net spillover index decreased during this period. 
The study on the impact of the Russo-Ukrainian war on the banking network is 
still at an early stage. My results suggest considering the banking network’s micro 
and group-aggregated level volatility connectedness in building an early-warning 
system to detect troubled financial institutions.

REFERENCES

Acharya, V. – Engle, R. – Richardson, M. (2012): Capital shortfall: A new approach to ranking 
and regulating systemic risks. American Economic Review, 102(3), 59–64, https://doi.org/ 10.1257/
aer.102.3.59.

Alter, A. – Beyer, A. (2014): The dynamics of spillover effects during the European sovereign debt 
turmoil. Journal of Banking & Finance, 42, 134–153, https://doi.org/10.1016/j.jbankfin.2014.01.030.

Antonakakis, N. – Chatziantoniou, I. – Gabauer, D. (2020): Refined measures of dynamic con-
nectedness based on time-varying parameter vector autoregressions. Journal of Risk and Finan-
cial Management, 13(4), 84, https://doi.org/10.3390/jrfm13040084.

Baruník, J. – Kocenda, E. – Vácha, L. (2016): Asymmetric connectedness on the US stock mar-
ket: Bad and good volatility spillovers. Journal of Financial Markets, 27, 55–78, https://doi.
org/10.1016/j.finmar.2015.09.003.

Baruník, J. – Krehlík, T. (2018): Measuring the frequency dynamics of financial connectedness and 
systemic risk. Journal of Financial Econometrics, 16(2), 271–296, https://doi.org/10.1093/jjfinec/
nby001.

Benoit, S. – Colliard, J. E. – Hurlin, C. – Perignon, C. (2017): Where the risks lie: a survey on 
systemic risk. Review of Finance, 21, 109–152, https://doi.org/10.1093/rof/rfw026.

Berlinger, E. – Michaletzky, M. – Szenes, M. (2011): A fedezetlen bankközi forintpiac hálózati 
dinamikájának vizsgálata a likviditási válság előtt és után [The analysis of the network dynam-
ics of the uncovered interbank forint market before and after the liquidity crisis]. Közgazdasági 
Szemle, 58(3), 229–252, https://unipub.lib.uni-corvinus.hu/403/.

Berlinger, E. – Daróczi, G. – Dömötör, B. – Vadász, T. (2017): Pénzügyi hálózatok mag–periféria 
szerkezete: A magyar bankközi fedezetlen hitelek piaca, 2003–2012 [Financial Networks Core-

https://doi.org/%2010.1257/aer.102.3.59
https://doi.org/%2010.1257/aer.102.3.59
https://doi.org/10.3390/jrfm13040084
https://doi.org/10.1016/j.finmar.2015.09.003
https://doi.org/10.1016/j.finmar.2015.09.003
https://doi.org/10.1093/jjfinec/nby001
https://doi.org/10.1093/jjfinec/nby001
https://doi.org/10.1093/rof/rfw026
https://unipub.lib.uni-corvinus.hu/403/


THE banKinG sECTOR in THE TiME OF THE RUssO-UKRainian WaR 419

Periphery Structure: The Hungarian Interbank Unsecured Loans Market, 2003–2012]. Közgaz-
dasági Szemle, 64(11), 1160-1185, https://doi.org/10.18414/KSZ.2017.11.1160.

Billio, M. – Casarin, R. – Costola M. – Pasqualini, A. (2016): An entropy-based early warning 
indicator for systemic risk. Journal of International Financial Markets, Institutions and Money, 
45, 42-59, https://doi.org/10.1016/j.intfin.2016.05.008.

Bisias, D. – Flood, M. – Lo, A. W. – Valavanis, S. (2012): A survey of systemic risk analytics. 
Annual Review of Financial Economics, 4(1), 255-296, https://doi.org/10.1146/annurev-finan-
cial-110311-101754.

Bodnár, Á. Zs. (2021): An analysis of the hungarian unsecured interbank market before and after 
the COVID-19 pandemic. Economy and Finance, 8(2), 1093–209, https://bankszovetseg.hu/Pub-
lic/gep/2021/193-209%20E%20Bodnar%20A.pdf.

Borri, N. – Di Giorgio, G. (2022): Systemic risk and the COVID challenge in the European banking 
sector. Journal of Banking & Finance, 140, 106073. https://doi.org/10.1016/j.jbankfin.2021.106073.

Bratis, T. – Laopodis, N. T. – Kouretas, G,(2020): Systemic risk and financial stability dynamics 
during the eurozone debt crisis. Journal of Financial Stability, 47, 100723. https://doi.org/10.1016/j.
jfs.2020.100723.

Brownless, C.T. – Engle, R. (2017): SRISK: a conditional capital shortfall measure of systemic risk. 
Review of Financial Studies, 30(1), 48–79, https://doi.org/10.1093/rfs/hhw060.

Bubák, V. – Kocenda, E. – Zikes, F. (2011): Volatility transmission in emerging European foreign 
exchange markets. Journal of Banking & Finance, 35(11), 2829–2841, https://doi.org/10.1016/j.
jbankfin.2011.03.012.

Claeys, P. – Vasícek, B. (2014): Measuring bilateral spillover and testing contagion on sovereign 
bond markets in Europe. Journal of Banking & Finance, 46, 151–165, https://doi.org/10.1016/j.
jbankfin.2014.05.011.

Demirer, M. – Diebold, F. X. – Liu, L. – Yilmaz, K. (2018): Estimating global bank network con-
nectedness. Journal of Applied Econometrics, 33(1), 1–15, https://doi.org/10.1002/jae.2585.

Dreassi, A. – Miani, S. – Paltrinieri, A. – Sclip, A. (2018): Bank-Insurance Risk Spillovers: Evi-
dence from Europe. Geneva Papers of Risk and Insurance – Issues and Practice. 43(1), 72–96, 
https://doi.org/10.1057/s41288-017-0049-0.

Diebold, F. X. – Yilmaz, K. (2009): Measuring financial asset return and volatility spillovers, 
with application to global equity markets. The Economic Journal, 119(534), 158–171. https://doi.
org/10.1111/j.1468-0297.2008.02208.x.

Diebold, F. X. – Yilmaz, K. (2012): Better to give than to receive: Predictive directional meas-
urement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66, https://doi.
org/10.1016/j.ijforecast.2011.02.006.

Diebold, F. X. – Yilmaz, K. (2014): On the network topology of variance decompositions: Measur-
ing the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134, https://doi.
org/10.1016/j.jeconom.2014.04.012.

Diebold, F. X. – Yilmaz, K. (2015): Trans-Atlantic equity volatility connectedness: US and Euro-
pean financial institutions, 2004–2014. Journal of Financial Econometrics, 14(1), 81–127, https://
doi.org/10.1093/jjfinec/nbv021.

Foglia, M. – Angelini, E. (2020): From me to you: Measuring connectedness between eurozone 
financial institutions. Research in International Business and Finance, 54, 101238, https://doi.
org/10.1016/j.ribaf.2020.101238.

Greenwood-Nimmo, M. – Nguyen, V. H. – Rafferty, B. (2016): Risk and return spillovers 
among the G10 currencies. Journal of Financial Markets, 31, 43–62, https://doi.org/10.1016/j.fin-
mar.2016.05.001.

https://doi.org/10.18414/KSZ.2017.11.1160
https://doi.org/10.1016/j.intfin.2016.05.008
https://doi.org/10.1146/annurev-financial-110311-101754
https://doi.org/10.1146/annurev-financial-110311-101754
https://bankszovetseg.hu/Public/gep/2021/193-209%20E%20Bodnar%20A.pdf
https://bankszovetseg.hu/Public/gep/2021/193-209%20E%20Bodnar%20A.pdf
https://doi.org/10.1016/j.jbankfin.2021.106073
https://doi.org/10.1093/rfs/hhw060
https://doi.org/10.1016/j.jbankfin.2011.03.012
https://doi.org/10.1016/j.jbankfin.2011.03.012
https://doi.org/10.1002/jae.2585
https://doi.org/10.1057/s41288-017-0049-0
https://doi.org/10.1111/j.1468-0297.2008.02208.x
https://doi.org/10.1111/j.1468-0297.2008.02208.x
https://doi.org/10.1093/jjfinec/nbv021
https://doi.org/10.1093/jjfinec/nbv021
https://doi.org/10.1016/j.finmar.2016.05.001
https://doi.org/10.1016/j.finmar.2016.05.001


Csaba badiCs Milán420

Greenwood-Nimmo, M. – Huang, J. – Nguyen, V. H. (2019): Financial sector bailouts, sovereign 
bailouts, and the transfer of credit risk. Journal of Financial Markets, 42, 121–142, https://doi.
org/10.1016/j.finmar.2018.11.001.

Greenwood-Nimmo, M. – Tarassow, A. (2022): Bootstrap-based probabilistic analysis of spillover 
scenarios in economic and financial networks. Journal of Financial Markets, 59, 100661, https://
doi.org/10.1016/j.finmar.2021.100661.

Kang, S. H. – McIver, R. – Yoon, S.-M. (2017): Dynamic spillover effects among crude oil, precious 
metal, and agricultural commodity futures markets. Energy Economics, 62, 19–32, https://doi.
org/10.1016/j.eneco.2016.12.011.

Koop, G. – Pesaran, M. H. – Potter, S. M. (1996): Impulse response analysis in nonlinear multivar-
iate models. Journal of econometrics, 74(1), 119–147, https://doi.org/10.1016/0304-4076(95)01753-4.

Kurka, J. (2019): Do cryptocurrencies and traditional asset classes influence each other? Finance 
Research Letters, 31, 38–46, https://doi.org/10.1016/j.frl.2019.04.018.

Lütkepohl, H. (2013): Vector autoregressive models. Handbook of research methods and applica-
tions in empirical macroeconomics, 30. Cheltenham: Edgar Elgar, https://elearning.unito.it/sme/
pluginfile.php/192766/course/section/41571/Kilian_Handbook13.pdf.

Moratis, G. (2021): Quantifying the spillover effect in the cryptocurrency market. Finance Research 
Letters, 38, 101534. https://doi.org/10.1016/j.frl.2020.101534.

Paltalidis, N. – Gounopoulos, D. – Kizys, R. – Koutelidakis, Y. (2015): Transmission channels 
of systemic risk and contagion in the European financial network. Journal of Banking & Finance 
61, S36–S52, https://doi.org/10.1016/j.jbankfin.2015.03.021.

Pesaran, H. H. – Shin, Y. (1998): Generalized impulse response analysis in linear multivariate mod-
els. Economics Letters, 58(1), 17–29, https://doi.org/10.1016/S0165-1765(97)00214-0.

Shahzad, S. J. H. – Van Hoang, T. H. – Arreola-Hernandez, J. (2019): Risk spillovers between 
large banks and the financial sector: Asymmetric evidence from Europe. Finance Research Let-
ters, 28, 153–159, https://doi.org/10.1016/j.frl.2018.04.008.

Sims, C. A. (1980): Macroeconomics and reality. Econometrica: journal of the Econometric Society, 
48(1) 1–48, https://doi.org/10.2307/1912017.

Tobias, A. – Brunnermeier, M. K. (2016): Covar. The American Economic Review, 106(7), 1705–1741, 
https://doi.org/10.3386/w17454.

Torri, G. – Giacometti, R. – Tichy, T. (2021): Network tail risk estimation in the European bank-
ing system. Journal of Economic Dynamics and Control, 127, 104125, https://doi.org/10.1016/j.
jedc.2021.104125.

Wang, G.-J. – Xie, C. – Jiang, Z.-Q. – Stanley, H. E. (2016): Who are the net senders and recipients 
of volatility spillovers in China’s financial markets? Finance Research Letters, 18, 255–262, https://
doi.org/10.1016/j.frl.2016.04.025.

https://doi.org/10.1016/j.finmar.2018.11.001
https://doi.org/10.1016/j.finmar.2018.11.001
https://doi.org/10.1016/0304-4076(95)01753-4
https://doi.org/10.1016/j.frl.2019.04.018
https://elearning.unito.it/sme/pluginfile.php/192766/course/section/41571/Kilian_Handbook13.pdf
https://elearning.unito.it/sme/pluginfile.php/192766/course/section/41571/Kilian_Handbook13.pdf
https://doi.org/10.1016/j.jbankfin.2015.03.021
https://doi.org/10.1016/S0165-1765(97)00214-0
https://doi.org/10.1016/j.frl.2018.04.008
https://doi.org/10.2307/1912017
https://doi.org/10.3386/w17454
https://doi.org/10.1016/j.frl.2016.04.025
https://doi.org/10.1016/j.frl.2016.04.025

